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Indoor air quality measurement campaign — The HUS Triangle
hospital

* The Building is located in Meilahti (Helsinki), Finland

* The building was rather new, the construction was finished in
2010

* The building has 9 floors: 1 floor underground, and 8 floors above ! i
ground level

* The total floor area of the building was 21 600 m2 and it had
almost 1000 rooms

* The building had mechanical ventilation with 34 air handling
units serving the whole building

* Space heating was supplied with water-based radiators and
cooling only through the supply air ,- ,
Triangle Hospital

* The air handling units were operating 24 hours per day and they (HUS)

had constant flow rate all the time
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IAQ measurements at the HUS Triangle Hospital Building

* A wireless sensor network was installed into the hospital to
monitor indoor conditions, i.e. temperature, CO2, relative
humidity, TVOC, barometric pressure etc.

* In total data from 45 sensors (TUAS and HUS sensors) were
analyzed in this study

e Data shown here was collected in 2020

Space type Number of Rooms
Isolation rooms 12

Patient rooms 13

Offices 5
Corridors 5
Consulting rooms 3
Treatment rooms 2

Break rooms |

Supply air duct 4

In total 45




Temperature — Monthly and per season (HUS)
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Humidity — Monthly and per season (HUS)
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CO, — Monthly (HUS)
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Occupancy (HUS)

Room occupancy based on CO2 concentration
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Summary (IAQ measurement campaign at HUS)

* Room temperatures were on good level and did not fluctuate substantially between seasons

* RH varied greatly depending on season, low humidity during winter, spring and fall (no humidification in
AHU)

* CO, concentrations were found to be on low level throughout the year
* In general, occupancy was high in the monitored hospital
* Occupancy was especially high in isolation and patient rooms (used 24/7)

* Occupancy in offices, treatment and consultation rooms were notably lower than in isolation and
patient rooms (they are typically used during normal office hours)




Ventilation, air distribution and Healthcare worker exposure to
exhaled breath of a patient (Airborne-project)
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Methods

Isolation/patient room model
* Afull-scale model of a patient/isolation room (LxWxH: 4 mx 4.7 m x 2.6 m)

* Breathing thermal manikins with realistic exhalation, thermal plumes etc.

Smoke visualizations

* Theater smoke used to illustrate the dispersal of patient exhaled airborne pathogens
and qualitatively assess the HCW exposure

* Tracer gas experiments

* Tracer gas (SF6) was dosed into the exhalation of the patient and measured from the
inhalation of the HCW manikin (and from the extracts) to assess the exposure

Air speed measurements

* Air speed was measured with hot sphere anemometers to assess the air movement
above and around the patient bed

Thermal comfort measurements

* Thermal manikin was used to assess the patient thermal comfort when lying in the
bed (using PMV scale)
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Methods

* Examined supply air distributions
* Carried out with 4-12 ACH (85-170 L/s) ventilation rate
* Supply air temperature 19 °C, room air temperature 22.5 °C

* Total heat load of 750 W (HCW, patient, lighting, solar load, equipment)

Local downward ventilation

Overhead mixing ventilation

Supply diffusers

4000




Results (smoke visualizations)

* Smoke visualizations of the spreading of the exhaled air of the patient
* 12 ACH in both cases (170 L/s)
* MV: all air supplied along the ceiling (170 L/s)
* LDV: downward part 40 L/s, mixing part 130 L/s

MV, 20°,12 ACH, E LDV, 20°, 12 ACH,
corner exhausts corner exhausts
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Results (air speed and thermal comfort)

* Measured velocities and thermal comfort of the patient:
* 12 ACH, 22.5 °C room air temperature
* MV: all air supplied along the ceiling (170 L/s)
* LDV: downward part 40 L/s, mixing part 130 L/s

MV = Mixing ventilation LDV = Local Downward Ventilation
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Kallioméki, P., Koskela, H., Waris, M. and Tang, J. W-T. (2020).
https.//iosh.com/media/8432/aerosol-infection-risk-hospital-
patient-care-full-report.pdf.
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Results (tracer gas measurements)

* HCW exposure in different locations
inside the isolation room model

* Steady state conditions (except for breathing)

* Bars represent one hour averages (HCW exposure
relative to the extract concentration)

* Whiskers represent the standard error of the average
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Kalliomaki, P., Koskela, H., Waris, M. and Tang, J. W-T. (2020).
https://iosh.com/media/8432/aerosol-infection-risk-hospital-patient-care-full-report.pdf.
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Results (tracer gas measurements)

* HCW exposure with different
ventilation rates

* HCW leaning over the patient

¢ Steady state conditions (except for
breathing)

* Bars represents one hour averages (how
much HCW is inhaling the patient exhaled
contaminant)

* Black whiskers represents the standard
error of the average
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Kalliomaki, P., Koskela, H., Waris, M. and Tang, J. W-T. (2020).
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Summary (Ventilation, air distribution and exposure)

* Air distribution affects notably the HCW exposure, especially close to the patient

* HCW exposure close to the patient was found to be substantially higher than further away from the patient,
especially with mixing ventilation

* Increasing ventilation rate can reduce the HCW exposure to patient exhaled breath, even close to the patient

* Local downward ventilation was able to flush the HCW breathing zone more effectively, hence reducing the
HCW exposure compared to the mixing ventilation case

* Thermal comfort was found to be adequate with both examined supply air distribution modes
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Thank you for your attention!

Dr. Petri Kalliomaki (pkallio@umd.edu)

Mr. Hannu Koskela (hannu.Koskela@turkuamk.fi)
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